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Self-Duality for Multi-State Probabilistic Cellular
Automata with Finite Range Interactions

Norio Konno'
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In this paper we study a criterion of self-duality for multi-state probabilistic
cellular automata with finite range interactions and give some models which
satisfy this criterion.
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1. INTRODUCTION

The present paper treats necessary and sufficient conditions on self-
duality for multi-state probabilistic cellular automata with finite range
interactions on the integer lattice Z. Self-duality is a very useful technique
in the study of probabilistic cellular automata. Because problems in
uncountable state space (typically configurations of zeros and ones live in
Z) can be reformulated as problems in countable state space (typically
finite subsets of Z). For some applications of self-duality on probabilistic
cellular automata (in particular, oriented bond percolation model) and the
contact process, see Chaps. 4 and 5 of ref. 1. To describe the dynamics of
probabilistic cellular automata, we introduce an interaction neighborhood
N ={—=L,—(L—1),..., L—1, L} and a transition function

F{0, 1., M—1}*x{0,1,.., M—1} > [0,1]
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The evolution of probabilistic cellular automata #, = {7,(x) € {0, 1,...,
M —1} : x e Z} is given by

P(1,41(x) =m)
= f(”n(x_L)7 nn(x_(L_ 1))aa ’7n(x+(L_ 1))5 ”n(x+L)9 m)
foranyne{0,1,2,..},me{0,1,...M—1} and xe Z. Let N =2L+1. We

call the above model M-state N-neighbor probabilistic cellular automata in
this paper. Remark that

M-1
z f(iliz...iN;m)zl
m=0

for any (i}, iy,..., iy) € {0, 1,..., M —1}". Furthermore, when we emphasize
the initial states 4, = {x : 55o(x) =i} (i = 1, 2,..., M — 1), we write 5> #2~4n-1
€{0,1,... M—1}~.

Let &l 42w 4u-1 denote the set of m’s for the above mentioned M-state

(m),n
N-neighbor probabilistic cellular automata at time # starting from a set of
m’s=A,,  Z. That is, (21 = {x e Z: yy> "1 (x) = m} for each

me{l,2,..., M—1}. We also call this set-valued process M-state N-neighbor
probabilistic cellular automata. We sometimes write it &, for short.

The M-state N-neighbor probabilistic cellular automata &, is said to
be self-dual with self-duality parameters x,, (im=1,2,..., M —1) if

M—1 A, A A M—1 B,, B B
1> 4o Apg 1 1> By Bar—1
E< [T xEemr A Byl > — E< [T xker “A'"'> (n=0,1,...)

m=1 m=1

for any 4,,, B, = Z with |4,,| <o or |B,|<w (m=1,2,..,M—1). The
above equation is called self-duality eqaution.
In this setting, we obtain the following main result.

Theorem 1. We suppose that

£(00---00;0)=1 (1.1
Sy iy _qiy;m) = f(iyiy_y - ixiy; m) (1.2)

for any (i}, iyy..., iy, m) € {0, 1,...., M —1}V*+! Let

qiiy - iy; m; X)) = X, f (G0 iy m)+ 1= f (@10, iy m)
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Then necessary and sufficient conditions on self-duality with self-duality
parameters x,, (m=1,2,..., M—1) for M-state N-neighbor probabilisitic
cellular automata with transition probabilities f'(i,i, - - - iy; m) are given by

k—1 N—k

N
q(iriy---iy;myx,) = [] q(0---0m0---0;i;x, (1.3)

k:ig#0

for any (iy, iy,..., iy) € {0, 1,..., M —1}" except (0,0,...,0) and me {l,...,
M —1}, where [1;.,, .o means [,_, 5 _y With i, # 0 for (i}, i,..., iy).
We should note that Eq. (1.1) gives

q(00---0;m; x,) =1 (me{l,.,M—1}) (1.9

Moreover in a special case of Eq. (1.3), we have

k—1 N— k—1 N—k
——

k
g(0---0u0---050;x)=q(0-000-0;u; x,) (1.5)

for any u, ve {1,..., M —1}. Remark that x,, = 1 for any m is a trivial solu-
tion for Eq. (1.3) and noninformative.

Here we review briefly the results corresponding to Theorem 1. Katori
et al.? gave the result on the Domany-Kinzel model (a special case of
M =2 and N = 3). See Example 1 in the next section.

Concerning recent studies on duality for continuous-time interacting
particle systems, see refs. 3—7, for examples.

The rest of the paper is organized as follows. In Section 2, we will give
some examples which satisfy Theorem 1. Section 3 is devoted to the proof
of Theorem 1.

2. EXAMPLES

In this section we give three examples.

Example 1. If we consider M =2 and N = 3 case with

£(000; 1) = £(010; 1) =0
f(001; 1) = f(011; 1) = f(100; 1) = f(110; 1) = p,
S0 1) = f(111;1) = p,
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then our model is equivalent to the Domany-Kinzel model with two
parameters p; and p, which was introduced by refs. 8 and 9. As special
cases the Domany—Kinzel model is equivalent to the oriented bond percola-
tion model (p;, = p, p, =2p—p?) and the oriented site percolation model
(p; =p, =p) on a square lattice. The two-dimensional mixed site-bond
oriented percolation model with probabilities p, of a site being open and p,
of a bond being open corresponds to the case of p; = p,p, and p, = p,[1—
(1—p,)*]. The model with (p;, p,) =(1,0) becomes Wolfram’s@®!D ryle
90. For more detailed information, see pp. 90-98 in ref. 1. Then Eq. (1.3)
with x = x,,(m = 1,..., M —1) becomes the following one equation:

xp,+1—p,=(xp+1 _P1)2

The above result was obtained by ref. 2.

Example 2. We consider M =3 and N =3 case. Then Eq. (1.3)
becomes

q(001; 2; x,) = q(002; 1; x;)

q(010; 2; x,) = q(020; 1; x;)

g(011; 1; x,) = ¢(010; 1; x;) ¢(001; 1; x,)
q(011; 2; x,) = q(020; 1; x,) q(002; 1; x;)
q(012; 1; x;) = q(010; 1; x;) g(001; 2; x;)
q(012; 2; x,) = q(020; 1; x,) q(002; 2; x;)
q(021; 1; x;) = q(010; 2; x,) g(001; 1; x;)
q(021; 2; x,) = q(020; 2; x,) g(002; 1; x,)
q(022; 1; x;) = q(010; 2; x,) q(001; 2; x,)
q(022; 2; x,) = q(020; 2; x,) q(002; 2; x,)
q(101; 1; x;) = q(001; 1; x,)?

q(101; 2; x,) = q(002; 1; x,)?

q(102; 1; x,) = q(001; 1; x;) g(001; 2; x;)
q(102; 2; x,) = q(002; 1; x,) g(002; 2; x,)
q(202; 1; x;) = g(001; 2; x,)*

q(202; 2; x,) = q(002; 2; x,)*
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q(111; 15 x,) = ¢(001; 1; x;)* ¢(010; 1; x;)
q(111; 2; x,) = q(002; 1; x;)* g(020; 1; x;)
q(112; 1; x,) = q(001; 1; x;) q(010; 1; x,) g(001; 2; x,)
q(112; 2; x,) = q(002; 1; x;) q(020; 1; x,) g(002; 2; x,)
q(121; 1; x;) = q(001; 1; x,)? g(010; 2; x,)
q(121; 2; x,) = q(002; 1; x,)? g(020; 2; x,)
q(122; 1; x,) = q(001; 1; x,) ¢(010; 2; x,) ¢(001; 2; x,)
q(122; 2; x,) = q(002; 1; x;) q(020; 2; x,) q(002; 2; x,)
q(212; 1; x;) = q(001; 2; x,)* g(010; 1; x;)
q(212; 2; x,) = q(002; 2; x,)* (020; 1; x;)
q(222; 1; x;) = q(001; 2; x,)? g(010; 2; x,)
q(222; 2; x,) = q(002; 2; x,)? g(020; 2; x,)
Example 3. We consider the following general M-state N-neighbor

case: for any (i, iy,...,iy) € {0, 1,..., M—1}" except (0,0,...,0) and me
{1,..., M —1}, transition probabilities are given by

f(z'lz'2~--z'N;m)=sm[1— 1 (1—p(ik;m))]

krig 0
and f(00---00; 0) =1 with

p(i; m) = p(m; i) (i,me{l,.,M—1})
where s,, € R\ {0} and p(i,; m) € R satisfy f(i,i,---iy;m)€ [0, 1] for any

(i1sdpseer iy, m)€ {0, 1,..., M—1}"*" and R be the set of real numbers.
When

x,, = n=1 (me{l,..,M—1})

the above f(i,i,...iy; m) satisfies Eq. (1.3) as follows: for any (i, i5,..., iy) €
{0,1,..., M —1}" except (0, 0,...,0) and m € {1,..., M — 1}, we see that
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q(iriy - -iys m; x,) = (%, = 1) f(iaiy---iy; m)+1

=(xm—1)s,,,[1— I (1—p(ik;m))]+1

k:ip#0

=[] [1—pG;m)]

k:ig#0
on the other hand,
1 N

I_I q(O OmO 0 Iy X;,) = I_I [(x,;, —l)f(O OmO 0 i,)+1]
k:ip#0 k:ip#0

[T [G—=1 s, pm;i)+1]

k:ig#0

[T [1—p0m;i)]

k:ig#0

[T [1=pG;m)]

k:ip#0

So this is a typical class of models which satisfy Eq. (1.3).

3. PROOF OF THEOREM 1

In this section we prove Theorem 1. Let a=(aq;:jeZ) and b=
(b;: jeZ) with a;,b; €{0,1,..., M—1} for any j, where, if je 4, (resp.
¢ Uf‘fll A)), then a; =m (resp. =0) and if je B, (resp. ¢ J;Z;' B), then
b;=m (resp. = O), for m=1,2,..., M —1. Furthermore we introduce the
following notation: for any (uy, u,,..., uy, v) € {*,0, 1,..., M —1}¥*!,

WLty -y | 0Dy = Z 1, (a] L)Iz(aj—(L—l))"'IuN(aj+L) Iv(bj)

JjeZ

sty - uy | vy, = z ( (L—1))"'IuN(bj+L)Iv(aj)

jeZ

where I,(y) =1 for any y and, when x # *, I.(y) =1 (resp. =0), if y=x
(resp. y # x). Remark that the definition gives

M-1
GSU Uy ¥ Uy Uy [ 0Dy = z GSUy U Uy Uy | DD, (3.1
u =0
M—1
pU gy ¥ Uy Uy | VD, = z pUL U Uy - Uy | DD, (3.2

u =0
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for any uy,...,w_y, gy iy, vE€{0, 1,.., M—1} and ke {l,..., N}.
Moreover note that for any u, ve {1,...., M—1} and ke {1,..., N},

k—1 N—k N—k k—1

G U |0y =y (e Dk | U, 3.3)

From the Markov property of &,, it is sufficient to prove self-duality
equation with time n = 1, that is,

M-1 Ay, Ay A B
E< T i '> < H et MlnA»«l) (3.4)
m=1

In our setting, we have

M-1

N _
LHS.of Eq. B4 =[] TI T1 qGiis---in;m; x,, )izt lme

m=1 k=1 ix=0

M-1 N M-1 k-1 Nk . o

f— 1_[ 1_[ l_[ q(OO mOO,lk, xik)a<’1’2”"N|m>b
m=1 k=1 ix=0 k:iz#0
M-1 N M-1 k-1 Nk o

=[] II II II 4q(0---03,0---0;m;x,)-rrivim
m=1 k=1 it=0 k:iz#0
M—-1 N k—1 N—k k 1 N k

= 1_[ 1_[ g(0---0i,0---0;m; x )“<* iR Iy
m=1 k= =

The second equality comes from Egs. (1.3) and (1.4). We use Eq. (1.5)
to get the third equality. The last equality is obtained by a standard inclu-
sion-exclusion argument noting Eq. (3.1).

On the other hand, we obtain

M-1 N M-1 k—1 N—k k1 Nk
R.H.S. of Eq. 3.4) = n H n g(0---0,0---0;m; x ),,<* i mda

m=1 k=1 ig=1
M-1 N M-1 k—1 N—k N % k .

= l_[ H q(O -0 lkO -0;m; x, )“<* i e i
m=1 k=1 ig=1
M-1 N M-1 N—k k—1 N k k .

= H 1_[ q(0---0i,0---0; m; xm)a<* i e i
m=1 k=1 ip=1
M-1 N M-1 N—k k—1 Nk R

ST TT TT 000 m0--0s 5, oo
m=1 k=1 ig=1
M-1 M—1 i1 N—j e

H q(0---0 m0---0;i; x)ao e iy
ij=1

=

[
—

3
I
—_
-
I
—



930 Konno

The first equality is given by a similar computation as in the case of L.H.S
of Eq. (3.4) noting Eq. (3.2). The second equality comes from Eq. (3.3). By
using Eq. (1.2), we have the third equality. The fourth equality can be
derived from Eq. (1.5).

Therefore we obtain the desired conclusion.
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